Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res B Appl Biomater ; 112(2): e35389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356168

RESUMEN

Advances in methodologies to evaluate biomaterials brought an explosive growth of data, ensuing computational challenges to better analyzing them and allowing for high-throughput profiling of biological systems cost-efficiently. In this sense, we have applied bioinformatics tools to better understand the biological effect of different sintering temperatures of hydroxyapatite (abbreviated HA; at 1100, 1150, and 1250°C) on osteoblast performance. To do, we have better analyzed an earlier deposited study, in which the access code is E-MTAB-7219, which the authors have explored different in silico tools on this purpose. In this study, differential gene expression analyses were performed using the gene set variation analysis (GSVA) algorithm from the transcriptomes respecting the thermal changes of HA, which were validated using exclusively in vitro strategies. Furthermore, in silico approaches elected biomarkers during cell behavior in response to different sintering temperatures of HA, and it was further validated using cell culture and qPCR technologies. Altogether, the combination of those strategies shows the capacity of sintered HA at 1250°C to present a better performance in organizing an adequate microenvironment favoring bone regeneration, angiogenesis and material resorption stimulus once it has promoted higher involvement of genes such as CDK2, CDK4 (biomarkers of cell proliferation), p15, Osterix gene (related with osteogenic differentiation), RANKL (related with osteoclastogenesis), VEGF gene (related with angiogenesis), and HIF1α (related with hypoxia microenvironment). Altogether, the combination of in silico and cell culture strategies shows the capacity of sintered HA at 1250°C in guaranteeing osteoblast differentiation and it can be related in organizing an adequate microenvironment favoring bone regeneration, angiogenesis, and material resorption stimulus.


Asunto(s)
Materiales Biocompatibles , Durapatita , Materiales Biocompatibles/farmacología , Durapatita/farmacología , Temperatura , Osteogénesis , Proliferación Celular , Técnicas de Cultivo de Célula , Biomarcadores
2.
J Bone Miner Res ; 38(8): 1135-1153, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37314430

RESUMEN

Leukotrienes (LTs) are derived from arachidonic acid metabolism by the 5-lipoxygenase (5-LO) enzyme. The production of LTs is stimulated in the pathogenesis of rheumatoid arthritis (RA), osteoarthritis, and periodontitis, with a relevant contribution to bone resorption. However, its role in bone turnover, particularly the suppression of bone formation by modulating the function of osteoclasts and osteoblasts, remains unclear. We investigated the effects of LTs on bone metabolism and their impact on osteogenic differentiation and osteoclastogenesis using a 5-LO knockout (KO) mouse model. Results from micro-computed tomography (µCT) analysis of femur from 8-week-old 5-LO-deficient mice showed increased cortical bone and medullary region in females and males and decreased trabecular bone in females. In the vertebra, we observed increased marrow area in both females and males 5-LO KO and decreased trabecular bone only in females 5-LO KO. Immunohistochemistry (IHC) analysis showed higher levels of osteogenic markers tissue-nonspecific alkaline phosphatase (TNAP) and osteopontin (OPN) and lower expression of osteoclastogenic marker tartrate-resistant acid phosphatase (TRAP) in the femurs of 5-LO KO mice versus wild-type (WT). Alkaline phosphatase activity and mineralization assay results showed that the 5-LO absence enhances osteoblasts differentiation and mineralization but decreases the proliferation. Alkaline phosphatase (ALP), Bglap, and Sp7 gene expression were higher in 5-LO KO osteoblasts compared to WT cells. Eicosanoids production was higher in 5-LO KO osteoblasts except for thromboxane 2, which was lower in 5-LO-deficient mice. Proteomic analysis identified the downregulation of proteins related to adenosine triphosphate (ATP) metabolism in 5-LO KO osteoblasts, and the upregulation of transcription factors such as the adaptor-related protein complex 1 (AP-1 complex) in long bones from 5-LO KO mice leading to an increased bone formation pattern in 5-LO-deficient mice. We observed enormous differences in the morphology and function of osteoclasts with reduced bone resorption markers and impaired osteoclasts in 5-LO KO compared to WT osteoclasts. Altogether, these results demonstrate that the absence of 5-LO is related to the greater osteogenic profile. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Resorción Ósea , Osteogénesis , Masculino , Femenino , Ratones , Animales , Fosfatasa Alcalina/metabolismo , Microtomografía por Rayos X , Proteómica , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Resorción Ósea/patología , Diferenciación Celular , Ratones Noqueados , Leucotrienos/metabolismo , Leucotrienos/farmacología
3.
Green Chem ; 24(12): 4845-4858, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35813357

RESUMEN

Wood-feeding termites effectively degrade plant biomass through enzymatic degradation. Despite their high efficiencies, however, individual glycoside hydrolases isolated from termites and their symbionts exhibit anomalously low effectiveness in lignocellulose degradation, suggesting hereto unknown enzymatic activities in their digestome. Herein, we demonstrate that an ancient redox-active enzyme encoded by the lower termite Coptotermes gestroi, a Cu/Zn superoxide dismutase (CgSOD-1), plays a previously unknown role in plant biomass degradation. We show that CgSOD-1 transcripts and peptides are up-regulated in response to an increased level of lignocellulose recalcitrance and that CgSOD-1 localizes in the lumen of the fore- and midguts of C. gestroi together with termite main cellulase, CgEG-1-GH9. CgSOD-1 boosts the saccharification of polysaccharides by CgEG-1-GH9. We show that the boosting effect of CgSOD-1 involves an oxidative mechanism of action in which CgSOD-1 generates reactive oxygen species that subsequently cleave the polysaccharide. SOD-type enzymes constitute a new addition to the growing family of oxidases, ones which are up-regulated when exposed to recalcitrant polysaccharides, and that are used by Nature for biomass degradation.

4.
J Biomed Mater Res A ; 109(6): 1004-1014, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32820608

RESUMEN

Two in silico methodologies were implemented to reveal the molecular signatures of inorganic hydroxyapatite and ß-TCP materials from a transcriptome database to compare biomaterials. To test this new methodology, we choose the array E-MTAB-7219, which contains the transcription profile of osteoblastic cell line seeded onto 15 different biomaterials up to 48 hr. The expansive potential of the methodology was tested from the construction of customized signatures. We present, for the first time, a methodology to compare the performance of different biomaterials using the transcriptome profile of the cell through the Gene set variation analysis (GSVA) score. To test this methodology, we implemented two methods based on MSigDB collections, using all the collections and sub-collections except the Hallmark collection, which was used in the second method. The result of this analysis provided an initial understanding of biomaterial grouping based on the cell transcriptional landscape. The comparison using GSVA score combined efforts and expand the potential to compare biomaterials using transcriptome profile. Altogether, our results provide a better understanding of the comparison of different biomaterials and suggest a possibility of the new methodology be applied to the prospection of new biomaterials.


Asunto(s)
Materiales Biocompatibles , Variación Genética/genética , Ensayo de Materiales/métodos , Transcriptoma , Algoritmos , Fosfatos de Calcio , Línea Celular , Biología Computacional , Simulación por Computador , Durapatita , Humanos , Osteoblastos , Poliestirenos , Titanio
5.
Colloids Surf B Biointerfaces ; 163: 321-328, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329077

RESUMEN

Over the last several years, we have focused on the importance of intracellular signaling pathways in dynamically governing the biointerface between pre-osteoblast and surface of biomaterial. Thus, this study investigates the molecular hallmarks involved in the pre-osteoblast relationship with different topography considering Machined (Mc), Dual Acid-Etching (DAE), and nano hydroxyapatite-blasted (nHA) groups. There was substantial differences in topography of titanium surface, considering Atomic Force Microscopy and water contact angle (Mc = 81.41 ±â€¯0.01; DAE = 97.18 ±â€¯0.01; nHA = 40.95 ±â€¯0.02). Later, to investigate their topography differences on biological responses, pre-osteoblast was seeded on the different surfaces and biological samples were collected after 24 h (to consider adhesion signaling) and 10 days (to consider differentiation signaling). Preliminary results evidenced significant differences in morphological changes of pre-osteoblasts mainly resulting from the interaction with the DAE and nHA, distinguishing cellular adaptation. These results pushed us to analyze activation of specific genes by exploring qPCR technology. In sequence, we showed that Src performs crucial roles during cell adhesion and later differentiation of the pre-osteoblast in relationship with titanium-based biomaterials, as our results confirmed strong feedback of the Src activity on the integrin-based pathway, because integrin-ß1 (∼5-fold changes), FAK (∼12-fold changes), and Src (∼3.5-fold changes) were significantly up-expressed when Src was chemically inhibited by PP1 (5 µM). Moreover, ECM-related genes were rigorously reprogrammed in response to the different surfaces, resulting on Matrix Metalloproteinase (MMP) activities concomitant to a significant decrease of MMP inhibitors. In parallel, we showed PP1-based Src inhibition promotes a significant increase of MMP activity. Taking all our results into account, we showed for the first time nano hydroxyapatite-blasted titanium surface creates a biointerface able to govern Src-dependent osteoblast metabolism as pre-requisite to ECM remodeling.


Asunto(s)
Durapatita/química , Matriz Extracelular/metabolismo , Nanopartículas/química , Osteoblastos/metabolismo , Titanio/farmacología , Familia-src Quinasas/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Línea Celular , Matriz Extracelular/efectos de los fármacos , Genes Supresores , Ratones , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Fenotipo , Propiedades de Superficie
6.
Biotechnol Bioeng ; 114(8): 1888-1898, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28401535

RESUMEN

Although, intracellular signaling pathways are proposed to predict the quality of cell-surface relationship, this study addressed pre-osteoblast behavior in response to nano hydroxyapatite (HA)-blasted titanium (Ti) surface by exploring critical intracellular pathways and pre-osteoblast morphological change. Physicochemical properties were evaluated by atomic force microscopy (AFM) and wettability considering water contact angle of three differently texturized Ti surfaces: Machined (Mac), Dual acid-etching (DAE), and nano hydroxyapatite-blasted (nHA). The results revealed critical differences in surface topography, impacting the water contact angle and later the osteoblast performance. In order to evaluate the effect of those topographical characteristics on biological responses, we have seeded pre-osteoblast cells on the Ti discs for up to 4 h and subjected the cultures to biological analysis. First, we have observed pre-osteoblasts morphological changes resulting from the interaction with the Ti texturized surfaces whereas the cells cultured on nHA presented a more advanced spreading process when compared with the cells cultured on the other surfaces. These results argued us for analyzing the molecular machinery and thus, we have shown that nHA promoted a lower Bax/Bcl2 ratio, suggesting an interesting anti-apoptotic effect, maybe explained by the fact that HA is a natural element present in bone composition. Thereafter, we investigated the potential effect of those surfaces on promoting pre-osteoblast adhesion and survival signaling by performing crystal violet and immunoblotting approaches, respectively. Our results showed that nHA promoted a higher pre-osteoblast adhesion supported by up-modulating FAK and Src activations, both signaling transducers involved during eukaryotic cell adhesion. Also, we have shown Ras-Erk stimulation by the all evaluated surfaces. Finally, we showed that all Ti-texturing surfaces were able to promote osteoblast differentiation up to 10 days, when alkaline phosphatase (ALP) activity and osteogenic transcription factors were up-modulated. Altogether, our results showed for the first time that nano hydroxyapatite-blasted titanium surface promotes crucial intracellular signaling network responsible for cell adapting on the Ti-surface.Biotechnol. Bioeng. 2017;114: 1888-1898. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Tamaño de la Célula , Durapatita/química , Nanopartículas/química , Osteoblastos/citología , Osteoblastos/fisiología , Osteogénesis/fisiología , Células 3T3 , Animales , Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Materiales Biocompatibles Revestidos/química , Ensayo de Materiales , Ratones , Transducción de Señal/fisiología , Propiedades de Superficie , Titanio
7.
Appl Biochem Biotechnol ; 177(2): 304-17, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26242386

RESUMEN

Glycoside hydrolases (GHs) are enzymes found in all living kingdoms that are involved in multiple physiological functions. Due to their multiple enzymatic activities, GHs are broadly applied in bioethanol, food, and paper industry. In order to increase the productivity of these industrial processes, a constant search for novel and efficient enzymes has been proved to be necessary. In this context, metagenomics is a powerful approach to achieve this demand. In the current study, we describe the discovery and characterization of a novel member of GH16 family derived from the sugarcane soil metagenome. The enzyme, named SCLam, has 286 amino acid residues and displays sequence homology and activity properties that resemble known laminarases. SCLam is active against barley beta-glucan, laminarin, and lichenan (72, 33, and 10 U mg(-1), respectively). The optimal reaction conditions were identified as 40 °C and pH 6.5. The low-resolution structure was determined using the small-angle X-ray scattering technique, revealing that SCLam is a monomer in solution with a radius of gyration equal to 19.6 Å. To the best of our knowledge, SCLam is the first nonspecific (1,3/1,3:1,4)-ß-D-glucan endohydrolase (EC 3.2.1.6) recovered by metagenomic approach to be characterized.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Metagenoma , Saccharum/crecimiento & desarrollo , Microbiología del Suelo , Secuencia de Aminoácidos , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Filogenia , Dispersión del Ángulo Pequeño , Especificidad por Sustrato , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...